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Abstract The kinetics of A1 + A2 → A1A2 reaction on supported catalysts is inves-
tigated numerically using three phenomenological models. The first of them is based
on PDEs and includes: the bulk diffusion of both reactants from a bounded vessel
towards the adsorbent and the product bulk one into the same vessel, adsorption and
desorption of molecules of both reactants, and surface diffusion of adsorbed particles
described by the diffusion flux based on the particle jumping into a nearest vacant
adsorption site. The second model based on the ODEs is derived by averaging of the
first one. The third mixed model is based on the PDEs for the bulk diffusion of both
reactants and ODEs for the adsorbates surface diffusion on the supported catalyst
which is composed of the active in reaction catalyst particle and inactive support.
All three models are solved numerically and their results are compared. Two distinct
arrangements of the adsorption sites are used for numerical calculations: (i) concentra-
tions of the adsorption sites of the catalyst particle and support are equal, (ii) the total
amount of adsorption sites of the active and inactive in reaction surface parts are the
same. Calculations are performed for the case where: (i) molecules of both reactants
adsorb only on the support and (ii) particles of one reactant adsorb on the active part
while molecules of the other one adsorb on the support. The influence of the surface
diffusivity, jump rate constants of the escaped particles of both adsorbates via the
catalyst-support interface, and size of the active catalyst particle (or size-dependent
distribution of active sites in the second case of their arrangement) on the catalytic
reactivity of the supported catalyst is studied.
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1 Introduction

Modelling of catalytic processes plays a central role in study of kinetics in hetero-
geneous catalysis and catalysts design in chemical industry [1–5]. Real catalysts
consist of small active particles placed on inactive in reaction supports. One of kinetic
effects associated with small catalyst particles on a support is the spillover effect.
It is caused by the fact that parts of the surface which are inactive in the surface
reaction can be active for other processes that occur during the catalytic process, i.e.
adsorption-desorption process and increase or decrease concentrations of either sub-
strate or product particles on active parts of the surface through the diffusion of the
adsorbed reactant particles across the interface between the catalyst particles and the
support [1,6,7].

The bibliography of the current state of theoretical research of reactions with
spillover effects include: (i) papers based on the Monte Carlo simulations technique
[6,8–10], (ii) numerical solving of mean-field models [11–16], and (iii) the analytical
description of such effect [2,17]. In [9], the uni-molecular A → B and bimolecular
2A → B reversible reactions occuring on the composite catalyst surface are stud-
ied. In [6,8,10], the three-molecular 2A + B2 → 2AB reaction is considered. In
[11,12], these reactions are studied numerically by using mean-field equations for the
steady-state case. Under some restrictions on the rate constants and ratio of reactants
pressures authors of [7] derived approximate analytical formulas to describe dynam-
ics of 2A + B2 → 2AB reaction with spillover effect. In [15,16], the spillover effect
in monomer-monomer, A1 + A2 → A1A2, and dimer-dimer, 2A2 + B2 → 2A2B,
reactions are studied numerically by applying mean-field models based on the Fick
andGorban surface diffusionmechanisms [18], respectively. Using analyticalmethods
and scaling concepts amodel for steady-state uni-molecular reactions on the supported
catalysts including reactant adsorption, desorption, and diffusion of adsorbed particles
is examined in [2].

In this paper, we consider the bimolecular A1 + A2 → A1A2 surface reaction
proceeding on supported catalysts by using three models. The first of them is a revised
monomer-monomer surface reactions model studied in [15]. It is described by PDEs
and contrary to [15] is based on Gorban’s surface diffusion mechanism [18]. A sim-
plified model based on ODEs is derived by averaging of the revised PDEs model. The
third mixed model contains PDEs for the bulk diffusion of both reactants and ODEs
for the surface reaction and adsorbates diffusion.

Adsorption, desorption, and surface diffusion are allowed to proceed at a constant
temperature and the product desorption is assumed to be instantaneous. We consider
two adsorption cases of reactants A1 and A2: (i) both reactants adsorb only on the
inactive support, (ii) one of reactants adsorbs on the catalyst particle while the other
one adsorbs on the inactive in reaction support.

The goal of this paper is the comparison of the influence of the surface diffusivity,
jump rate of adsorbed particles across the support-catalyst interface, and catalytic
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particle size on the reactivity of supported catalysts determined by using three models
mentioned above.

The paper is organized as follows. In Sect. 2 we present the model. In Sect. 3 we
discuss numerical results. A summary of main results in Sect. 4 concludes the paper.

2 The models

We study the bimolecular reaction, A1 + A2 → A1A2, proceeding on supported
catalysts by using three mean-field models. The first of them is based on PDEs for
concentrations of reacting species and product particles (refer to as PDEs model). To
derive the second (ODEs)model we reduce the PDEs system to theODEs by averaging
of the PDEs model. Having derived two first models we construct the mixed one (refer
to as Mixed model).

2.1 The PDEs model

In this section, we derive the PDEsmodel and consider the casewhere reactants A1, A2
and their reaction product B = A1A2 of concentrations a1(t, x), a2(t, x), and b(t, x)
occupy a bounded domain Ω = {x = (x1, x2, x3) : xi ∈ [0, l], i = 1, 2, 3} with
boundary S̃ = S1 ∪ S2, where S2 = {x = (x1, x2, x3) : xi ∈ [0, l], i = 1, 3, x2 = 0}
and S1 = S̃ \ S2. Here t is time, x is a position, S2 is the surface of the adsorbent, and
S1 is a surface impermeable to the reactants and product. Obviously, x2 > 0 for S1.

Assume that S2 = S22∪S21 where S22 = {(x1, x2, x3) : x1 ∈ [0, x∗), x2 = 0, x3 ∈
[0, l]} and S21 = {(x1, x2, x3) : x1 ∈ (x∗, l], x2 = 0, x3 ∈ [0, l]}, x∗ ∈ (0, l), are
strips consisting of the active and inactive in reaction adsorption sites of densities
s2(x), x = (x1, x3) ∈ S22, and s1(x), x = (x1, x3) ∈ S21, respectively (Fig. 1).

According to Langmuir–Hinshelwood the surface reaction A1+A2 → A1A2 occurs
via steps

A1 + S
k1i
�
k−1i

A1S, A2 + S
k2i
�
k−2i

A2S, A1S + A2S
k32→ A1A2 + 2S, i = 1, 2.

Here S is the vacant adsorption site, k ji and k− j i are the adsorption and desorption
rates constants (i = 1 for inactive site, i = 2 for active one) of reactants A1 and A2,
k32 is the reaction between adsorbates A1S and A2S rate constant.

Fig. 1 Schematic representation
of the model for the supported
catalyst. Dashed line S22, dotted
line S21, S2 = S22 ∪ S21
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Let ui2 = s2θi2 and ui1 = s1θi1 (θi1, θi2 ∈ (0, 1)) be concentrations of the active
and inactive sites occupied by the adsorbed molecules of reactant Ai at moment t .
It is evident that functions ui1 and ui2 present density of particles of species Ai S
bound to sites of type i that are located at point x at moment t . Current advances
in nanotechnology made it possible to produce nanopatterned surfaces with assumed
geometric properties and to study their reactivity [9]. In Sect. 3, we specify s1(x)
and s2(x) and for numerical study consider two distinct types of adsorption sites
arrangement.

Let κi1 and κi2 be the surface diffusivity for particles of adsorbate Ai S located at
the active and inactive part of catalyst surface, respectively. To simplify the model
we restrict ourselves to the case where densities s1 and s2 do not depend variable x3
and the initial values a01 , a

0
2 , and b0 of concentrations a1, a2, and b are constants. In

this case we can reduce the three-dimensional problem into two-dimensional one. Let
λ1,12 and λ1,22 be constants of the jump rates via the catalyst-support interface x∗ of
escaped particles of species A1S and A2S from the active position x∗ − 0 into the
nearest-neighbour vacant inactive site x∗ + 0. Similarly, λ2,11 and λ2,21 are constants
of the jump rates via the catalyst-support interface of escaped particles of species A1S
and A2S from the inactive position x∗ + 0 into the nearest-neighbour vacant active
site x∗ − 0. Assuming that product desorption is instantaneous and using mass action
law and the surface diffusion mechanism based on the particle jumping into a nearest
vacant adsorption site [18],

q ji = −κ j i
{
(si − u1i − u2i − u3i )∇u ji − u ji∇(si − u1i − u2i − u3i )

}
,

we derive the following system for densities ui j (t, x1), i, j = 1, 2,

∂t ui1 = ki1ai (s1 − u11 − u21) − k−i1ui1
+ κi1

(
(s1 − u3−i1)∂

2
x1x1ui1 − ui1∂

2
x1x1(s1 − u3−i1)

)
,

x1 ∈ (x∗, l), t > 0,

∂t ui2 = ki2ai (s2 − u12 − u22) − k−i2ui2 − k32u12u22
+ κi2

(
(s2 − u3−i2)∂

2
x1x1ui2 − ui2∂

2
x1x1(s2 − u3−i2)

)
,

x1 ∈ (0, x∗), t > 0. (1)

Here i = 1, 2 and ∇ is the gradient operator. We add to this system the initial

ui j (0, x1) = 0, i, j = 1, 2, (2)

and boundary conditions at points x1 = 0, x1 = x∗, and x1 = l,

∂x1u12|x1=0 = ∂x1u22|x1=0 = 0,

∂x1u11|x1=l = ∂x1u21|x1=l = 0, (3)

κ11
(
(s1 − u21)∂x1u11 − u11∂x1(s1 − u21)

)

= κ12
(
(s2 − u22)∂x1u12 − u12∂x1(s2 − u22)

)

= λ2,11κ11u11(s2 − u12 − u22) − λ1,12κ12u12(s1 − u11 − u21),
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κ21
(
(s1 − u11)∂x1u21 − u21∂x1(s1 − u11)

)

= κ22
(
(s2 − u12)∂x1u22 − u22∂x1(s2 − u12)

)

= λ2,21κ21u21(s2 − u12 − u22) − λ1,22κ22u22(s1 − u11 − u21). (4)

We also join diffusion equations for concentrations of both reactants A1, A2 and
product B,

∂t a1 = κa1

(∂2a1
∂x21

+ ∂2a1
∂x22

)
, (x1, x2) ∈ (0, l) × (0, l), t > 0,

∂na1|S1 = 0, t > 0,

κa1∂na1 = −(
k11a1(s1 − u11 − u21) − k−11u11

)
,

x2 = 0, x1 ∈ (x∗, l), t > 0,

κa1∂na1 = −(
k12a1(s2 − u12 − u22) − k−12u12

)
,

x2 = 0, x1 ∈ (0, x∗), t > 0,

a1|t=0 = a01 , (x1, x2) ∈ (0, l) × (0, l), (5)

∂t a2 = κa2

(∂2a2
∂x21

+ ∂2a2
∂x22

)
, (x1, x2) ∈ (0, l) × (0, l), t > 0,

∂na2|S1 = 0, t > 0,

κa2∂na2 = −(
k21a2(s1 − u11 − u21) − k−21u21

)
,

x2 = 0, x1 ∈ (x∗, l), t > 0,

κa2∂na2 = −(
k22a2(s2 − u12 − u22) − k−22u22

)
,

x2 = 0, x1 ∈ (0, x∗), t > 0,

a2|t=0 = a02 , (x1, x2) ∈ (0, l) × (0, l), (6)

∂t b = κb

( ∂2b

∂x21
+ ∂2b

∂x22

)
, (x1, x2) ∈ (0, l) × (0, l),

∂nb|S1 = 0, t > 0,

κb∂nb = 0, x2 = 0, x1 ∈ (x∗, l), t > 0,

κb∂nb = k32u12u22, x2 = 0, x1 ∈ (0, x∗), t > 0,

b|t=0 = 0, (x1, x2) ∈ (0, l) × (0, l). (7)

Here ∂na1, ∂na2, and ∂nb are the outward normal derivatives whereas s2 and s1 in Eqs.
(1), (4)–(6) are densities of the active and inactive in reaction adsorption sites. Eqs.
(1)–(7) compose the PDEs model.

2.2 The ODEs model

In this section, by using the averaging procedure over intervals (x∗, l) and (0, x∗) for
the first and second equation of system (1) and over domainΩ := [0, l]×[0, l] for Eqs.
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(5)–(7), we derive a simplified model in the case where concentrations of adsorption
sites s1 and s2 are constants. To simplified Eqs. (1)–(7) we first determine the average
values of ai , ui2, and ui1 as

∫ l
0

∫ l
0 ai dx1 dx2/ l

2,
∫ x∗
o ui2 dx1/x∗,

∫ l
x∗ ui1 dx1/(l − x∗),

i = 1, 2, respectively, and note that the diffusion term in both Eqs. (1) can be written
in the divergence form of the diffusion flux qi j while the corresponding term in Eqs.
(5) and (6) already possesses the divergence form. Then we integrate Eqs. (1), (5)–
(7), apply the Gauss–Ostrogradsky divergence theorem to the diffusion terms, use
the corresponding boundary conditions with all functions on their right-hand sides
replaced by the corresponding average values, and employ the same notations for
averaged functions to get the system of ODEs:

a′
i = −(l − x∗)

(
ki1ai (s1 − u11 − u21) − k−i1ui1

)
/ l2

− x∗
(
ki2ai (s2 − u12 − u22) − k−12ui2)

)
/ l2, ai (0) = a0i , i = 1, 2, (8)

u′
i1 = ki1ai (s1 − u11 − u21) − k−i1ui1

+ (l − x∗)−1(λ1,i2κi2ui2(s1 − u11 − u21) − λ2,i1κi1ui1(s2 − u12 − u22)
)
,

ui1(0) = 0, i = 1, 2;
u′
i2 = ki2ai (s2 − u12 − u22) − k−i2ui2 − k32u12u22

+ (x∗)−1(λ2,i1ui1κi1(s2 − u12 − u22) − λ1,i2κi2ui2(s1 − u11 − u21)
)

ui2(0) = 0, i = 1, 2, (9)

b′ = x∗k32u12u22, b(0) = 0. (10)

Equations (8)–(10) compose the ODEs model.

2.3 The mixed model

In this section, having derived equations for the first two models, we construct the
Mixed model for the case of constant s1 and s2. To do this we consider Eqs. (5)–(7)
for bulk concentrations a1, a2, and b with ui1 and ui2 in the boundary conditions
replaced by their averaged values

∫ l
x∗ ui1 dx1/(l − x∗) and

∫ x∗
0 ui2 dx1/x∗ and Eqs.

(9) for averaged values of ui1 and ui2 with ai replaced by
∫ l
x∗ ai dx1/(l − x∗) and

∫ x∗
0 ai dx1/x∗, respectively. These revised Eqs. (5)–(7) and (9) compose the Mixed
model.

The PDEs, ODEs, and Mixed models possess two mass conservation laws:

∫

Ω

(ai + b) dx +
x∗∫

0

ui2 dx1 +
l∫

x∗

ui1 dx1 =
∫

Ω

(a0i + b0) dx, i = 1, 2.

The main characteristic we study is the surface reactivity (turnover frequency or
rate) determined by the equation
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z =
∫ x∗
0 k32u12u22 dx1

x∗s2
. (11)

Using the dimensionless variables

t̄ = t/T, x̄i = xi/ l, āi = ai/a∗, b̄ = b/a∗, s̄i = si/(la∗),
ūi j = ui j/(la∗), k̄i j = ki j T a∗, k̄−i j = k−i j T, k̄3 j = k3 j T,

κ̄ai = κai T/ l2, κ̄b = κbT/ l2, κ̄i j = κi j T a∗/ l,
λ̄1, j2 = lλ1, j2, λ̄2, j1 = lλ2, j1, (12)

where i, j = 1, 2 and T, l, a∗ are the characteristic dimensional units, we rewrite Eqs.
(1)–(10) in the same form, but now in the non-dimensional form expressed by using
the dimensionless (overscored) quantities. Therefore, for simplicity in what follows,
we omit the bar and treat system (1)–(10) as the non-dimensional with dimensionless
l = 1. Numerical values of scales T, l, and a∗ are given in Sect. 3.

In what follows we study Eqs. (1)–(4) and (9) with given constant values of a1, a2
and full systems (1)–(7) (PDEs model), (8)–(10) (ODEs model), and equations of the
Mixed model in the following two adsorption cases of the reactants A1 and A2:

(i) both reactants adsorb only on the inactive in reaction interval (x∗, 1],
(ii) reactant A1 adsorbs on the interval [x∗, 1], while the A2 adsorbs on the (0, x∗].
Hence, in case (i) we have k12 = k22 = 0, while in case (ii) k12 = k21 = 0.

3 Numerical results

System (1)–(4) with given values of a1 and a2 at the surface S2 was solved numerically
using an implicit difference scheme. To solve system (1)–(7) numerically we used an
implicit difference scheme based on the alternating direction method [19]. Systems
of ODEs were solved by standard MATLAB ODE solvers, viz. ode45 and ode113,
ode15s [20,21].

For all calculations we used the following dimensional data:

T = 1 s, l = 10−1 cm, a∗ = 10−11 mol cm−3,

s∗ = la∗ = 10−12 mol cm−2, ki j ∈ [109, 1011] cm3 mol−1 s−1,

k−i j , k ∈ [3 × 10−3, 1] s−1, κai , κb ∈ [5 × 10−7, 10−3] cm2 s
−1

. (13)

Dimensional numerical values of the other parameters directly follow from Eqs. (12)
and (13). In the case where values of ki j , κi j , and λi, jn for all values of indices are
equal, we use k = ki j , κ = κi j , and λ = λi, jn for short.

The following values of dimensionless parameters (overbar on the quantities is
omitted) excluding those given in captions were used in calculations:
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k ji = 1.66 × 10−2, k− j i = 1.66 × 10−3, k32 = 0.1,

κ j i = 0.1, λn, j i = 1, n, i, j = 1, 2, (14)

κa1 = κa2 = κb = 0.1, x∗ = 0.2.

The model values of dimensionless ki j , κi j , and λi, jn are given in the captions of
figures.

To study the influence of the adsorption sites arrangement we use for calculations
two different distributions of the adsorption sites (i) s1 = s2 = 1 and (ii) s2 =
s1(1/x∗ − 1), s1 = 1. In the first case, the total amounts of the active and inactive
sites for x∗ �= 0.5 are different. In the second case these amounts are equal, i.e.,∫ x∗
0 s2 dx1 = ∫ 1

x∗ s1 dx1. Contrary to the first arrangement, density of active sites
distribution, s2, depends on the catalyst particle size x∗ in the case (ii). It grows or
decreases as x∗ decreases or increases, respectively. But for x∗ = 0.5, s2 = s1 = 1 in
both arrangements of the adsorption sites. Using the second arrangement we study the
influence of the catalytic particle size-dependent distribution of the active sites on the
surface reactivity provided that the total amount of the active and inactive adsorption
sites is the same.

We begin with discussion of numerical results for systems (1)–(4) and (9) with
given constant values of a1 and a2. Numerical results are illustrated in Figs. 2, 3, 4
in the case where concentrations of active and inactive sites are equal, i.e. s1 = s2.
Figs. 5, 6 correspond to the case of equal total amount of active and inactive sites.
Comparison of the turn-over rate determined by the full PDEs, ODEs, and Mixed
models is given in the last Fig. 7.

In Fig. 2 the comparison of turn-over rate z(t) determined by systems (1)–(4) and (9)
for different values of jump rate constant λ2,11 = λ2,21 of escaped adsorbate particles

Fig. 2 Effect of variation of jump rate constant λ on the turnover rate z(t) determined by the PDEs model
(dashed line) and by ODEs model (solid line) with a1 = a2 = 1 for densities s1 = s2 = 1 in the cases
k12 = k22 = 0, k11 = k21 = 0.0166 (curves 1, 2, 3) and k12 = k21 = 0, k11 = k22 = 0.0166 (curves 4,
5, 6). Values of λ2,11 = λ2,21 are: 0.5 (1) and (4), 1 (2) and (5), 2 (3) and (6)
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(a)

(b)

Fig. 3 Dependence of turnover rate z(t) determined by the ODEs model with a1 = a2 = 1 and densities
s1 = s2 = 1 on the active interval length x∗: 0.1 (1), 0.2 (2), 0.4 (3), 0.5 (4), 0.6 (5), 0.8 (6), 0.9 (7). (a)
k12 = k22 = 0, k11 = k21 = 0.0166, (b) k12 = k21 = 0, k11 = k22 = 0.0166

across the catalyst-support interface is given. Curves 1, 2, 3 and 4, 5, 6 correspond
to different arrangement of adsorption sites. Curves 1, 2, 3 are plotted for the cases
where both reactants adsorb on the support (x∗, 1) with x∗ = 0.2 while curves 4,
5, 6 are drawn in the case where A1 and A2 adsorb on the support and the active
interval, respectively. This figure shows that the averaged model (9) provides a good
approximation of surface reactivity z(t) (maximal different between curves determined
by PDEs and ODEs models is less than 3% for curves 1, 2, 3 and is negligible for the
other three ones).

Figure 3 illustrates the influence of the active interval size x∗ on the behaviour
of the turn-over rate z(t) for k12 = k22 = 0, k11 = k21 = 0.0166 (Fig. 3a) and
k12 = k21 = 0, k11 = k22 = 0.0166 (Fig. 3b). In case where both reactants adsorb
on the support, function z(t) is monotonic in time and grows as size x∗ increases.

123



2132 J Math Chem (2015) 53:2123–2136

Fig. 4 Effect of the surface diffusivity on the turnover rate z(t) determined by the ODEs model with
a1 = a2 = 1 for densities s2 = s1 = 1 in case k12 = k22 = 0, k11 = k21 = 0.0166. Solid line
κ12 = κ22 = 0.1, κ11 = κ21: 0.1 (1), 0.3 (2), 0.5 (3), 1 (4); dashed line κ11 = κ22 = 0.1, κ12 = κ21: 0.3
(5), 0.5 (6), 1 (7)

Fig. 5 Influence of the parameter λ2,11 = λ2,21: 0.5 (1), 1 (2), 2 (3) on the turnover rate z(t) determined
by the ODEs model with densities a1 = a2 = 1 and s2 = s1(1/x∗ − 1), s1 = 1 in cases k12 = k22 = 0,
k11 = k21 = 0.0166 (solid line) and k12 = k21 = 0, k11 = k22 = 0.0166 (dashed line)

In case of reactants adsorption on different intervals, function z(t) grows in time,
possesses maximum, and then decreases to a steady-state value depending on the other
parameters. Figure 3b also shows that z as function of parameter x∗ also possesses a
maximum in the case of reactants adsorption on different intervals.

Effect of varying surface diffusivity κi j on function z(t) is depicted in Fig. 4. Curves
1, 2, 3, and 4 correspond to different values of κ11 = κ21 (κ12 = κ22 = 0.1) and curves
5, 6, and 7 are drown for varying κ12 = κ21(κ11 = κ22 = 0.1). Plots in this figure
demonstrate the increase of z(t) as κ11 = κ21 grows and its decrease as κ12 = κ21
increases. Moreover, function z(t) is monotonic in time. Our calculations also show a
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Fig. 6 Effect of variation of the active interval length x∗ on the turnover rate z(t) determined by the
ODEs model with densities a1 = a2 = 1 and s2 = s1(1/x∗ − 1), s1 = 1 in cases k12 = k22 = 0,
k11 = k21 = 0.0166 (solid line) and k12 = k21 = 0, k11 = k22 = 0.0166 (dashed line). Values of x∗: 0.1
(1), 0.2 (2), 0.4 (3), 0.5 (4), 0.6 (5), 0.8 (6), 0.9 (7)

similar behaviour of z(t) determined for the case of reactants adsorption on different
intervals.

Comparison of different influence of varying parameter λ2,11 = λ2,21 on the turn-
over rate z(t) in case of two different types of reactants adsorption is depicted in Fig. 5.
For small values of λ2,11 = λ2,21 and small time, function z(t) corresponding to the
case of reactants adsorption on different intervals is larger than that determined for
the case where both reactants adsorb on the support. For large time this behaviour is
opposite. For large values of λ2,11 = λ2,21 function z(t) corresponding to the case of
reactants adsorption on different intervals is smaller than that determined for reactants
adsorption on the support. In the case of reactants adsorption on different intervals,
function z(t) possesses maximum in time, while in the other case it is a monotonic
function of time.

Figure 6 depicts the dependence of the turn-over rate on the active interval size,
x∗. Solid lines correspond to the adsorption of both reactants on the support while
dashed lines illustrate function z(t) determined for reactants adsorption on different
intervals. In both cases function z(t) is monotone in time and increases as parameter
k11 = k21 (see solid lines) or k11 = k22 (dashed lines) grows. Moreover, function
z(t) corresponding to the case of reactants adsorption on different intervals is larger
than that determined for both reactants adsorption on the support. Maximal difference
between values of z(t) corresponding to two types of reactants adsorption is about 7%
from values of z(t) determined for adsorption of both reactants on the support.

The different influence of the bulk diffusivity of reactants on the turn-over rate
determined by PDEs, ODEs, and Mixed models is depicted in Fig. 7 for s1 = s2 =
1 and adsorption of both reactants on the support (Fig. 7a) and for the reactants
adsorption on different intervals (Fig. 7b). This figure shows that the ODEs model
well approximates the turn-over rate, z(t), only if the bulk diffusivity of both reactants
is large. In case of small reactants bulk diffusivity, function z(t) corresponding to
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(a)

(b)

Fig. 7 Comparison of function z(t) determined by the ODEs (dashed line), PDEs (solid line), and mixed
(symbol) models at three values of the reactants diffusivity κa1 = κa2 : 0.001 (1) and filled inverted triangle,
0.003 (2) and open circle, 0.1 (3) and filled circle in cases k12 = k22 = 0, k11 = k21 = 0.0166 (Fig. 6a)
and k12 = k21 = 0, k11 = k22 = 0.0166 (Fig. 6b) with a01 (x1, x2) = a02 (x1, x2) = 1 and densities
s1 = s2 = 1

the ODEs model dramatically differs from that determined by the PDEs model. The
mixed model provides a very good approximation of z(t) for all considered values of
the bulk reactants diffusivity.

4 Conclusions

To conclude the paper, we summarise themain results. In this paper, using three (PDEs,
ODEs, and Mixed) phenomenological models we studied numerically bimolecular
surface reactions proceeding on the supported catalysts. It is assumed that the support
is inactive in reaction. The PDEs model includes the bulk diffusion of both reactants
from a bounded impermeable vessel towards the adsorbent and the product bulk one
into the same vessel, adsorption and desorption of molecules of both reactants and
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rapid product desorption, surface diffusion of adsorbed particles described by the
diffusion flux based on the particle jumping into a nearest vacant adsorption site [18].
The ODEs model is derived by averaging of the PDEs. Two different arrangements of
adsorption sites were used: (i) concentrations of adsorption sites of the support and
catalyst particle are equal, (ii) the total amount of adsorption sites of the support and
catalyst particle are the same. Two cases of reactants adsorption are considered: (i)
both reactants adsorb on the support only, (ii) one reactant adsorbs on the support
while the other one adsorbs on the active in reaction catalyst particle.

Inactive in reaction sites, due to possibility of adsorption of at least one of reactants,
diffusion of adsorbed particles, and their jump across the catalyst-support interface
constitute an additional (to the adsorption) spillover channel transporting particles
onto active sites.

The main characteristic we studied was the catalyst particle specific conversion rate
(turn-over rate) of molecules of both reactants into the product ones. We compared
PDEs, ODEs, and Mixed models and demonstrate that:

1. ODEs model (9) with given concentrations of both reactants is good enough for
evaluation of the reactivity of composite catalysts.

2. ODEs (8)–(9) provide a good model for evaluation of the surface reactivity of the
composite catalysts only if the reactants bulk diffusivity is large.

3. The mixed model practically very well describes the turn-over rate z(t) of sup-
ported catalysts for all values of kinetic parameters.
We analysed the spillover effects determined by system (9) with given concen-
tration of both reactants, a1 and a2, on the turn-over rate, z(t), under different
conditions and found that:

4. The size of the active interval, x∗, and adsorption type of both reactants strongly
influence the turn-over rate:
4.1. If both reactants adsorb only on the support then in both cases of active sites

arrangement (s1 = s2 and s2 = s1(1/x∗ −1)) function z determined by system
(9) grows as size, x∗, decreases and is monotone in time.

4.2. In case of reactants adsorption on different intervals and s1 = s2, function z(t)
grows as x∗ decreases. But it is non-monotonic in time (possesses maximum
value and then tends to a positive asymptotic value depending on the other
parameters) if s2 = s1(1/x∗ − 1).

5. For both arrangements of adsorption active sites (s1 = s2 and s2 − s1(1/x∗ − 1))
and fixed κ12 = κ22, the increase of diffusion coefficient κ11 = κ21 increases z(t).
But for fixed κ11 = κ22 the increase of the surface diffusivity κ12 = κ21 decreases
z(t).

6. If both reactants adsorb only on the support and λ1,12 = λ1,22 is fixed, then for
both adsorption sites arrangements function z(t) is monotone in time and grows
as jump rate constant λ2,11 = λ2,21 increases. But if reactants adsorb on different
intervals, then for both arrangements of adsorption sites behaviour of function z(t)
is convoluted in time (not monotone).

Results of simulations let us to think that the Mixed model presented here is able to
describe qualitatively processes that proceed at constant temperature duringmonomer-
monomer reactions on supported catalysts.
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